

Purification of Viral RNA from Viral Transport Medium with the Maxwell® 16 Viral Total Nucleic Acid Purification Kit

Purify viral RNA from Viral Transport Medium (VTM) using the Maxwell® 16 Viral Total Nucleic Acid Purification Kit with the Maxwell® 16 or Maxwell® 16 MDx Instruments.

Kit: Maxwell® 16 Viral Total Nucleic Acid Purification Kit (Cat.# AS1150)

Analyses: RT-qPCR for detection of Respiratory Syncytial Virus (RSV) and Influenza B.

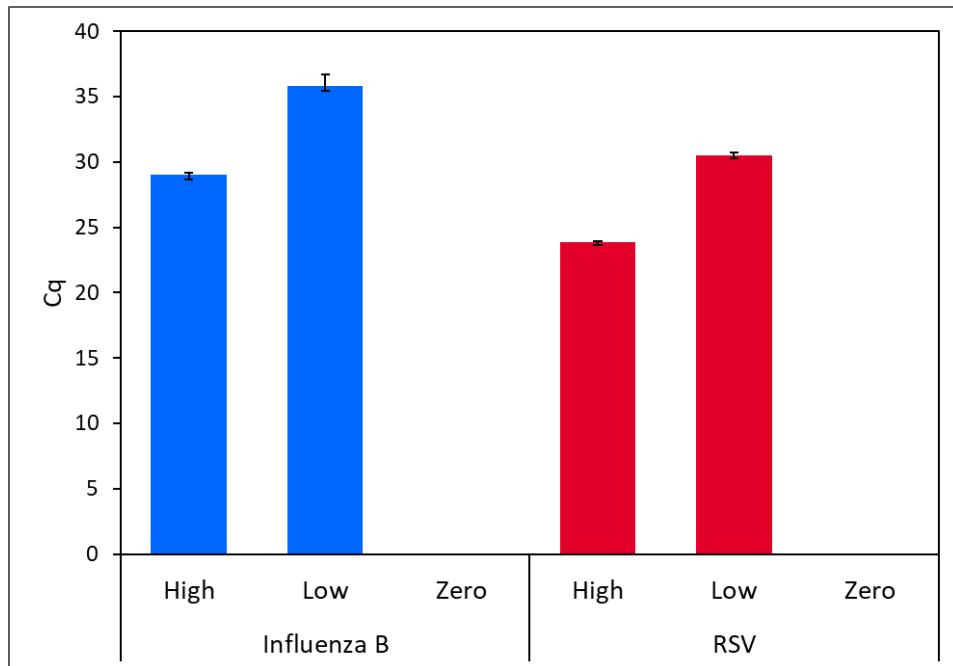
Sample Type(s): Samples collected in Viral Transport Medium (VTM)¹, e.g. nasopharyngeal swabs

Input: 200µl

Materials Required:

- Maxwell® 16 Viral Total Nucleic Acid Purification Kit (Cat.# AS1150)
- Maxwell® 16 MDx Instrument (Cat.# AS3000), Maxwell® 16 Instrument (Cat.# AS2000), or Maxwell® 16 Instrument (Cat.# AS1000)
 - Configured with low elution volume (LEV) hardware
 - Firmware v4.61 or higher (Cat.# AS1000, AS2000)
 - Firmware v1.05 or higher (Cat.# AS3000)
- Heat block set to 56°C

This protocol was developed by Promega Applications Scientists and is intended for research use only.


Users are responsible for determining suitability of the protocol for their application.

For further information, see Technical Bulletin TB385, available at: www.promega.com/protocols

or contact Technical Services at: techserv@promega.com

Protocol:

1. Prepare fresh Lysis Solution by combining 200µl of Lysis Buffer and 20µl Proteinase K Solution per sample plus 20% extra to compensate for pipetting losses.
2. Transfer 200µl of inoculated VTM to a 1.5ml tube.
3. Add 220µl of prepared Lysis Solution to each sample.
4. Close tubes and vortex for 10 seconds.
5. Incubate samples at 56°C for 10 minutes.
6. Meanwhile, prepare cartridges as indicated in the technical bulletin (TB385).
 - a. Add 50µl of Nuclease-Free Water to Elution Tubes.
7. Transfer the entire lysate to well #1 of the cartridge.
8. Set up the Maxwell® 16 instrument as described in the technical bulletin (TB385). Refer to the technical manual of the instrument being used for further instrument-specific details.
9. Select the Viral protocol and follow the instrument prompts. After opening the door, place the prepared Maxwell® 16 LEV Cartridge Rack in the instrument, and start the protocol.

Results:

Detection of RSV and Influenza B RNA extracted from viral transport medium. Viral transport medium (VTM) was inoculated with a nasopharyngeal swab and spiked with RSV A and Influenza B (Hong Kong) virus reconstituted from Helix Elite™ Inactivated Standard Inactivated Influenza A/B and Respiratory Syncytial Virus (Microbiologics Cat.# HE0044N). High virus sample contains approximately 2×10^5 copies of Influenza B and RSV A per 200 μ l sample. Low virus sample is a 1:100 dilution of the high virus sample in VTM. 200 μ l of the spiked VTM was processed with the Maxwell® 16 Viral Total Nucleic Acid Purification Kit on the Maxwell® 16 MDx Instrument as described above. Following nucleic acid purification, presence of RSV A and Influenza B was detected by RT-qPCR using GoTaq® 1-Step Probe qPCR System (Cat.# A6121). Each reaction contained 5 μ l of eluate with 12.5 μ l of the GoTaq® Probe qPCR Master Mix with dUTP, 0.5 μ l of GoScript™ RT Mix for 1-Step RT-qPCR, 1000nM forward and reverse primers and 200nM probe for RSV² or Influenza B³, and Nuclease-Free Water added to a final volume of 25 μ l. 1-step RT-qPCR thermal cycling was as follows³: reverse transcription at 50°C for 30 minutes, hot-start activation at 95°C for 2 minutes, and then 45 cycles of denaturation at 95°C for 15 seconds and annealing/extension at 55°C for 30 seconds, with signal acquisition during the annealing/extension stage of cycling. Data represent the average of triplicate purifications amplified in duplicate. Error bars indicate the standard deviation.

References:

1. Preparation of Viral Transport Medium, Centers for Disease Control
<https://www.cdc.gov/coronavirus/2019-ncov/downloads/Viral-Transport-Medium.pdf>
Accessed 3/30/2020.
2. Fry, A.M., et al., (2010) The Burden of Hospitalized Lower Respiratory Tract Infection due to Respiratory Syncytial Virus in Rural Thailand, *PLoS One*. **5**, e15098.
3. Selvaraju, S.B., et al., (2010). Evaluation of Three Influenza A and B Real-Time Reverse Transcription-PCR Assays and a New 2009 H1N1 Assay for Detection of Influenza Viruses, *Journal of Clinical Microbiology*. **48**, 3870-3875.